

APR 29 - 30, 2025

Rare Disease Day 2025 Conference

WESTIN CALGARY DOWNTOWN 320 4 AVE SW Calgary, AB

ALL ABOUT DATA

International Initiatives on RWD/RWE from Drug Development to Real-World Monitoring

Alicia Granados, MD PhD PH

Global Medical Affairs, Rare diseases

Sanofi

Co-Chair HTAi RDIG

Outline and Disclaimer

- Setting the scene on opportunities from data and challenges in RDs
- Some International initiatives to face current and future challenges

Final reflections

The opinions expressed in this presentation are only mine and shouldn't be attributed to anyone else, neither represents a company position

The opportunity from data is enormous...

Data is information collected through observation (RWD) or experimentation

From a developer perspective, there are 2 reasons to analyze data; one is **to understand the underlying mechanisms that drive the things we observe**, and the other is to use whatever analysis we've arrived at, **to do prediction**.

Prediction with what purpose?

- To face future / competitive challenges by getting faster, and stronger scientific evidence.
 - · Improving epidemiology data and NHD.
 - · Refine hypothesis and research questions
 - Understand feasibility of studies
 - · Fine tune study design
 - Better characterize population and diseases. Disease modeling
 - Improve patient recruitment, retention and reduce trial times.
 - To better, cheaper and faster estimate efficacy, safety (long term ambition), comparative effective comparative long term safety.
 - · Risk monitoring
 - Help incorporating patient subgroup identification in clinical development
- To better capture **Patient Relevant Outcomes**.
- To facilitate decisions for early access and reassessment from evidence assessors.

Real-World Data, Real-World Evidence and Real-World Insights

The collection of real- world **data** underpins **evidence** generation, that derives in real-world **insights** which are the actionable conclusions.

Insights from evidence influences regulatory, HTA and reimbursement decisions, clinical practices, and policy-making

Insights should be the result careful **interpretation and analysis of evidence**, transforming raw data into meaningful information

Image from Qlik

Real-World Data, Real-World Evidence and Real-World Insights: Main challenges in RDs

Interpretation and analysis of evidence, the named **the quality of evidence**, is the main challenge in RDs with the use of evidence assessment frameworks (EAF) that were build upon to analyze evidence from prevalent conditions

Evidence from rare **ALWAYS graded low quality** and high uncertainty. This pejorative terminology is **used as insight for decision making**

lealth Policy Analysis

Use of Real-World Evidence in Health Technology Reassessments Across 6 Health Technology Assessment Agencies

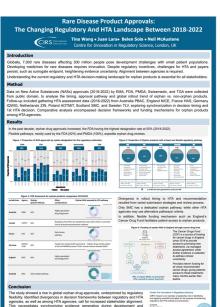
Ashley Jaksa, MPH, Patrick Joseph Arena, PhD, Melinda Hanisch, MIA, Mark Marsico, PhD

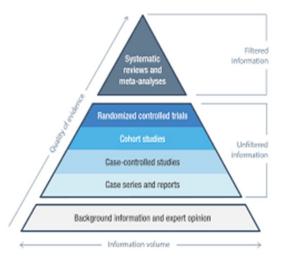
BSTRACT

Objectives: To review health technology assessment reassessments (HTARs) and characterize the use of real-world evidence (RWE) in HTARs.

Methods: Six agencies were chosen for inclusion in this targeted review. Canadian Agency for Drugs and Technologies in Health Mistandi Institute for Health and Can Everlience, Health Americal de Santé, Gemeinsamer Bundeausschuss) Institut für Qualität und Wirtschaftlichteit im Gesundheigeners, Zorginstituur Nederland, am Plarmaceutical Benefits Advissoy Committee. Each agency's assessment was screened to dentify their 8 most recent HTARs, which were evaluated to determine if they used NNE. If it or given agency less hash half of the screened HTARs used NNE, we dentified an administrat Aller Missessment desirables and filly how the NNE was seed. Nurraive synthesis in conjunction with descriptor seatistics were used to Amaretterine the findings with their screening of the screening of the screening of the screening of the screened states.

Results: We identified 40 HTMRs arross the agencies. Over half of the HTMRs were for encology therapies. Additionally, 525 used RWE; these reassessments tended to be for orphan therapies. RWE was solunitated to address at least 1 clinical uncertainty, with the most common being related to the primary)secondary endpoints. The majority of RWE studies came from registry data (574x)s Morrower, the proportion of HTMRs resulting in no change in patient access was similar than HTMRs that did and did not use RWE Lastly, no de novo RWE comparative effectiveness studies were identified.


Conclusions: Our findings imply that RWE can play a role in addressing uncertainties identified at launch, especially in addition to clinical trial evidence; agencies and sponsors should collaborate/align on evidence needs and study feasibility to ensure RWE can be effectively used in reassessments.


Keywords: health technology assessment, lifecycle management, real-world data, real-world dence, reassessment.

/ALUE HEALTH, 2025: ■(■):■-■

Highlights

- Previous studies have highlighted that many health technology assessment (HTA) agencies have developed health technology assessment reassessment (HTAR) processes to more toward a Hifecycle approach to HTA and that payers believe that real-world evidence (OWUS) should play an important role in HTARS. However, these studies also underscore the limited research on how often SWE is submitted and how RWE is used in HTAR decisions.
- This article shows how RWF can be used in several therapeutic areas (e.g. oncology and cardiovascular disease) to address a variety of uncertainties identified at bunch, such as those related to adverse events/alerty, primary and secondary effectiveness/efficacy endopoints, and treatment utilization. Moreover, this study demonstrates that RWF has mainly complemented official trial evidence for addressing clinical uncortainties.

GRADE: what is "quality of evidence" and why is it important to clinicians?

Guideline developers use a bewildering variety of systems to rate the quality of the evidence underlying their recommendations. Some are facile, some confused, and others sophisticated but complex

In 2004 the Grading of Recommendations Assessme Development and Evaluation (GRADE) Working Gropresented its initial proposal for patient managemenin this second of a series of five articles focusing on It GRADE approach to developing and presenting recomendations we show how GRADE has built on previsystems to create a highly structured; transparent, as

A guideline's formulation should include a

Any question addressing clinical management has for components guistents, an intervention, a companion and the outcomes of interest. For example, considerate following in patients with pancerealic carcinomadification of the properties of a mode field resection that preserves the piyorus compared with a standard wide tumour resection—variations with the Whipple procedure—on short term and long term mortality, blood transfusions, bile leaks, hospital staand problems with gastric employing?

Guideline developers should of their outcomes

or mear outcomes GRADE challenges guideline developers to specify all outcomes that are of importance to patients a they begin the guideline development process, and

This is a series of five articles that explain the GRADE sought for rating the quality of evidence and strength of recommendations

tant but not critical ones. Figure 1 presents a archy of patient important outcomes regarding substitutes. See the control of the control of patient important outcomes regarding professional control of the control of patient point is professional control of the control of the

Judging the quality of evidence requires cons

GRADE provides a definition for the quality of edence in the context of making recommendation. The quality of evidence reflects the extent to which confidence in an estimate of the effect is adequate to support recommendations. This definition has to important implications. Firstly, guideline panels mus make judgments about the quality of evidence relties to the specific context in which they are using the evidence. Secondly, because systematic reviews developed to the context of the commendation they require a different definition. For systematic reviews, the quality of evidence reflects the extent

Study design is important in determining the q

As with early systems of grading the quality of evdence, 'GRAD's paproach begins with the study design. For recommendation addressing alternative management states[ev-acpopend is usus of etablishing prognosis or the accuracy of diagnosis testrandomined trials provide, in general, tempor evidence than do observational studies. Rigorous observational to deverational studies. Rigorous observational to case series. In the GRAD's approach to quality of evdence, randomized trials without important limitations constitute high quality evidence. Observational studies whhout special strengths or important limitations constitute low quality evidence.

Five limitations can reduce the quality of the evidence The GRADE approach involves making separate ratings for quality of evidence for each patient important outcome and identifies five factors that can lower the

EMJ | 3 MAY 2008 | VOLUME

995

Potential solutions: Changing the paradigm

Operationalize the concept: Totality of Evidence for Rare diseases isn't Low Quality

Some International initiatives to face current and future challenges:

- -HTAi Rare diseases Interest Group
- IHI RealiseD Project

Why do we need a New Paradigm for Evidence Generation and Assessment in Rare Disease Technologies

- Inherent characteristics of Rare Diseases not well understood outside the rare community (nor its impact in evidence generation
- Differences in regulatory and HTA approaches on evidence expectations and interpretation between major agencies
- RWE, surrogate endpoints, biomarkers and digital outcomes not yet well accepted as good evidence
- Evidence for Rare ALWAYS graded in current evidence assessment frameworks (EAF) as low evidence and high uncertainty

Consequences:

Health inequalities:

Increasing disparity in medicines available to treat RD between different countries and within countries

Source: QVIA, Global Trends in R&D 2024, Feb 2024)

<u>HTAi Webinar | Why do we need a New Paradigm for Evidence Generation and Assessment in Rare Disease</u> <u>Technologies – HTAi</u>

Why do we need a New Paradigm for Evidence Generation and Assessment in Rare Disease Technologies?

Thursday FEBRUARY 27, 2025 | 02.00 - 3.30 PM GMT+1

Dorota Zgodka ERDERA The EU Rare Disease Research Alliance. Multidisciplinary **Advisory Board** Switzerland

Alicia Granados HTAi Rare Diseases Interest Group Co-Chair Spain

Chiesi Italy/France

Diana Sinkevich Tanya Collin-Histed Gaucher Alliance United Kingdom

Sean Tunis GRADE Working Group USA

Kit Roes RealiseD, IHI, PPP The Netherlands

Anja Schiel Norwegian Medical **Products Agency** EMA-European **Medicines Agency** Norway

compRehensive mEthodological and operational Approach to cLinical trialS in ultra-rarE Diseases

IHI RealiseD

Kick Off Meeting 2025 Viena, January 2025

Aim & Scope of the topic

The aim of RealiseD is to change the paradigm for clinical trials in ultra-rare diseases. By bringing together all stakeholders, including clinicians, methodologists, pharmaceutical industry, patients, regulators and HTA body,

RealiseD will catalyze the development and acceptance of innovative approaches for evidence generation, analysis and data interpretation

Focus on paediatric and adult rare diseases. A 5 years project

Deliver methodological solutions for innovative clinical trial designs and analyses, including regulatory and HTA considerations (basket trials, platform trials, in silico trials, RWD, Digital Health Technologies, quantitative and qualitative approaches, trial with remote elements ...)

Identify good practices to address knowledge gaps including collection of natural history data, development of relevant new endpoints and of patient reported outcomes (PROs)

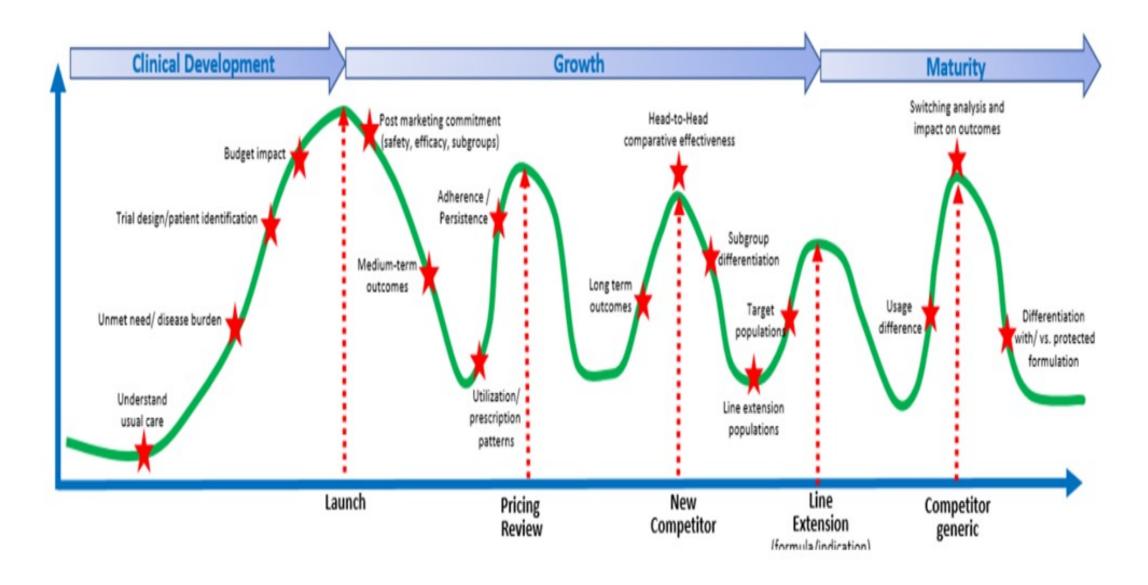
Scientific evaluation of regulatory and HTA assessment approaches, **using the concept of totality of evidence** in (U)RD.

Rare Disease Day 2025 Conference April 29 – 30, 2025 Calgary, Alberta

WESTIN CALGARY DOWNTOWN 320 4 AVE SW CALGARY

Final reflections

- Global multi-stakeholder and multi-disciplanary collaboration is crucial for better data and evidence generation but still is even crucial changing current paradigms in evidence assessment frameworks and its use for decision making.
- Changing the paradigm of the way rare evidence is assessed, not because we advocate for higher "flexibility" (meaning asking to reduce the quality of the scientific standards) but to use more appropriately the scientific methods (design and analysis) to help rare diseases.
- Advocating for a new global evidence assessment framework and the acceptability of the concept "Totality of Evidence for Rare" including qualitative evidence from patients



alicia.granados@sanofi.com

Use of RWE during technology life cycle

Clinical

Demographics, EHR Data, Lab Test Results, Diagnoses, Procedures, Pathology/ Histology Data, Radiology Images, Microbiology Data, Provider Notes, Admission/ Discharge and Progress Reports, Performance Status

Medication

Medication Orders,
Administration
(Dose, Route, NDC/RxNorm
codes), Concomitant
Therapies,
Point of Sale Data,
(Prescription & OTC)
Prescription Refill, Allergies

Claims

Medical Claims, Prescription Drug Claims, Other Drug and Treatment Use Data

Molecular Profiling

Genomic and Genetic
Testing Data (SNPs/Panels),
Multi-Omics Data
(Proteomics,
Transcriptomics,
Metabonomics,
Lipidomics), Other
Biomarker Status

Family History

Historical Data on
Health Conditions and
Allergies Relating to
Patient and Extended
Family, Smoking
Status, Alcohol Use

Mobile Health

Fitness Trackers, Wearable Devices, Other Health Apps Measuring Activity and Body Function

Environmental

Climate Factors,
Pollutants, Infections,
Lifestyle Factors (diets,
stress), Other
Environmental and
Occupational Sources

Patient Reported

Patient Reported
Outcomes, Surveys,
Diaries (diets, habits),
Personal Health Records,
Adverse Event Reporting,
Quality of Life Measures

Social Media

Patient Communities, Twitter, Facebook, Blogs

Literature

Disease Burden, Clinical Characteristics, Prevalence/Incidence, Rates of Treatment, Resource Use and Costs, Disease Control, Quality of Life Measures

Source: Swift B, Jain L, White C, Chandrasekaran V, Bhandari A, Hughes DA, et al. Innovation at the intersection of clinical trials and real-world data science to advance patient care. Clin Transl Sci. 2018;11(5):450–60.